Data-driven modeling of near-wall turbulence using β-variational autoencoder, transformers, and adversarial loss

Date:

Can machine learning help us understand and predict near-wall turbulence? In this talk, I presented a framework combining a β-variational autoencoder (β-VAE) for unsupervised feature extraction and a unidirectional transformer for temporal prediction of turbulent channel flows. Using minimal channel simulations at \(Re_\tau = 200\), we assess the framework’s ability to capture compact, interpretable representations and forecast flow dynamics. Validation includes energy spectra, quadrant analysis, and dynamical tools such as Lyapunov exponents and Poincaré maps.

Prediction with VAE and Transformer
Model's framework.